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Abstract 
This research presents the utility of graphics cards to perform 

massively parallel simulation of advanced Monte Carlo methods. Graphics 
cards, containing multiple Graphics Processing Units (GPUs), are self-
contained parallel computational devices that can be housed in conventional 
desktop and laptop computers and can be thought of as prototypes of the 
next generation of many-core processors. For certain classes of population-
based Monte Carlo (MC) algorithms they offer massively parallel 
simulation, with the added advantage over conventional distributed multi-
core processors that they are cheap, easily accessible, easy to maintain, easy 
to code, dedicated local devices with low power consumption. On a 
canonical set of stochastic simulation examples including population-based 
Markov chain Monte Carlo (MCMC) methods and Sequential Monte Carlo 
(SMC) methods, speedups are found from 35 to 500 fold over conventional 
single-threaded computer code. These findings suggest that GPUs have the 
potential to facilitate the growth of statistical modelling into complex data 
rich domains through the availability of cheap and accessible many-core 
computation.  
Keywords: Sequential Monte Carlo, Population-Based Markov Chain 

Monte Carlo, General Purpose Computation on Graphics 
Processing Units, Many-Core Architecture, Stochastic 
Simulation, Parallel Processing 

 

Introduction 
This research describes the utility of graphics cards involving Graphics 

Processing Units (GPUs) to perform local, dedicated, massively parallel 
stochastic simulation. GPUs were originally developed as dedicated devices to 
aid in real-time graphics rendering. However recently there has been an 
emerging literature on their use for scientific computing as they house 
multicore processors. Many advanced population-based Monte Carlo (MC) 
algorithms are ideally suited to GPU simulation and offer significant speed up 
over single CPU implementation. The focus is on the parallelization of general 
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sampling methods. Moreover, this research shows how the choice of 
population-based MC algorithm for a particular problem can depend on 
whether one is running the algorithm on a GPU or a CPU. 

To gain an understanding of the potential benefits to statisticians this 
research has investigated speedups on a canonical set of examples taken from 
the population-based MC literature. These include Bayesian inference for a 
Gaussian mixture model computed using a population-based Markov Chain 
Monte Carlo (MCMC) method. The idea of splitting the computational effort of 
parallelizable algorithms amongst processors is certainly not new to 
statisticians. In fact, distributed systems and clusters of computers have been 
around for decades. Many-core processor communication has very low 
latency and very high bandwidth due to high-speed memory that is shared 
amongst the cores. Low latency here means the time for a unit of data to be 
accessed or written to memory by a processor is low while high bandwidth 
means that the amount of data that can be sent in a unit of time is high. For 
many algorithms, this makes parallelization viable where it previously was 
not. In addition, the energy efficiency of a many-core computation compared 
to a single-core or distributed computation can be improved. This is because 
the computation can both take less time and require less overhead. Finally, 
these features enable the use of parallel computing for researchers outside 
traditional high-cost centers housing high-performance computing clusters. 

The speedup is chosen to investigate for the simulation of random 
variates from complex distributions, a common computational task when 
performing inference using MC. In particular, population-based MCMC 
methods and SMC methods are focused on for producing random variates as 
these are not algorithms that typically see significant speedup on clusters due 
to the need for frequent, high-volume communication between computing 
nodes. This work focuses on the suitability of many-core computation for MC 
algorithms whose structure is parallel, since this is of broad theoretical 
interest, as opposed to a focusing on parallel computation of application-
specific likelihoods. 

The algorithms are implemented for the Compute Unified Device 
Architecture (CUDA) and make use of GPUs which support this architecture. 
CUDA offers a fairly mature development environment via an extension to 
the C programming language. For applications CUDA version 5.5 with an 
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NVIDIA GT 750M are used. The GT 750M has 384 multiprocessors. For all 
current NVIDIA cards, a multiprocessor comprises 8 arithmetic logic units 
(ALUs), 2 special units for transcendental functions, a multithreaded 
instruction unit and on-chip shared memory. For example, for single-precision 
floating point computation, one can think of the GT 750 as having 3072 (384 
× 8) single processors. The current generation of GPUs is 4-8 times faster at 
single precision arithmetic than double precision. Single precision seems 
perfectly sufficient for the applications in this research since the variance of 
the Monte Carlo estimates exceeds the perturbations due to finite machine 
precision. 

 

Graphics Processing Unit for Parallel Processing 
GPUs have evolved into many-core processing units, currently with up 

to 30 multiprocessors per card, in response to commercial demand for real-
time graphics rendering, independently of demand for many-core processors 
in the scientific computing community. As such, the architecture of GPUs is 
very different to that of conventional CPUs. An important difference is that 
GPUs devote proportionally more transistors to ALUs and less to caches and 
flow control in comparison to CPUs. This makes them less general purpose 
but highly effective for data-parallel computation with high arithmetic 
intensity, i.e. computations where the same instructions are executed on 
different data elements and where the ratio of arithmetic operations to 
memory operations is high. This Single Instruction Multiple Data (SIMD) 
architecture puts a heavy restriction on the types of computation that 
optimally utilize the GPU but in cases where the architecture is suitable it 
reduces overhead. 

Figure 1 gives a visualization of the link between a host machine and 
the graphics card, emphasizing the data bandwidth characteristics of the links 
and the number of processing cores. A program utilizing a GPU is hosted on a 
CPU with both the CPU and the GPU having their own memory.  Data is 
passed between the host and the device via a standard memory bus, similar to 
how data is passed between main memory and the CPU. The memory bus 
between GPU memory and the GPU cores is both wider and has a higher 
clock rate than a standard bus, enabling much more data to be sent to the cores 
than the equivalent link on the host allows. This type of architecture is ideally 
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suited to data-parallel computation since large quantities of data can be loaded 
into registers for the cores to process in parallel. In contrast, typical computer 
architectures use a cache to speed up memory accesses using locality 
principles that are generally good but do not fully apply to data-parallel 
computations, with the absence of temporal locality most notable. 

 
Figure 1:  Link between host and graphics card. The thicker lines represent 

higher data  bandwidth while the squares represent processor cores. 
 

Graphics Processing Units Parallelizable Algorithms 
In general, if a computing task is well-suited to SIMD parallelization 

then it will be well-suited to computation on a GPU. In particular, data-
parallel computations with high arithmetic intensity (computations where the 
ratio of arithmetic operations to memory operations is high) are able to attain 
maximum performance from a GPU. This is because the volume of very fast 
arithmetic instructions can hide the relatively slow memory accesses. It is 
crucial to determine whether a particular computation is data-parallel on the 
instruction level when determining suitability. From a statistical simulation 
perspective, integration via classical Monte Carlo or importance sampling is 
ideal computational tasks in a SIMD framework. This is because each 
computing node can produce and weight a sample in parallel, assuming that 
the sampling procedure and the weighting procedure have no conditional 
branches. If these methods do branch, speedup can be compromised by many 
computing nodes running idle while others finish their tasks. This can occur, 
for example, if the sampling procedure uses rejection sampling. 

In contrast, if a computing task is not well-suited to SIMD 
parallelization then it will not be well-suited to computation on a GPU. In 
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particular, task-parallel computations where one executes different 
instructions on the same or different data cannot utilize the shared flow 
control hardware on a GPU and often end up running sequentially. Even when 
a computation is data-parallel, it might not give large performance 
improvements on a GPU due to memory constraints. This can be due to the 
number of registers required by each thread or due to the size and structure of 
the data necessary for the computation requiring large amounts of memory to 
be transferred between the host and the graphics card. 

Many statistical algorithms involve large data sets, and the extent to 
which many-core architectures can provide speedup depends largely on the 
types of operations that need to be performed on the data. For example, many 
matrix operations derive little speedup from parallelization except in special 
cases, e.g. when the matrices involved are sparse. It is difficult to classify 
concisely the types of computations amenable to parallelization beyond the 
need for data-parallel operations with high arithmetic intensity. However, 
experience with parallel computing should allow such classifications to be 
made prior to implementation in most cases. 

 

Parallelizable Sampling Methods 
A number of sampling methods for parallel implementations can be 

produced without significant modification. There is an abundance of statistical 
problems that are essentially computational in nature, especially in Bayesian 
inference. In many such cases, the problem can be distilled into one of 
sampling from a probability distribution whose density π, pointwise and up to 
a normalizing constant can be computed, that is, π*(·) where π (x) = π*(x)/Z 
can be computed. A common motivation for wanting samples from π is so 
expectations of certain functions can be computed. If such a function is 
denoted by ϕ, the expectation of interest is 

    
                               

 
 



148               J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 

The Monte Carlo estimate of this quantity is given by 

   
where     are samples from π. 

Samples from π in order to compute this estimate are needed. In 
practice, one often cannot sample from π directly. There are two general 
classes of methods for dealing with this. The first are importance sampling 
methods, where the weighted samples are generated from π by generating N 
samples according to some importance density γ proportional to γ* and then 
estimating I  via 

   
where W(i) are normalized importance weights 

   
The asymptotic variance of this estimate is given by C(ϕ, π, γ)/N, that is, 

a constant over N. For many problems, it is difficult to come up with an 
importance density γ such that C(ϕ, π, γ) is small enough to attain reasonable 
variance with practical values of N. 

The second general class of methods are MCMC methods, in which an 
ergodic π-stationary Markov chain is sequentially constructed. Once the chain 
has converged, all the dependent samples can be used to estimate I. The major 
issue with MCMC methods is that their convergence rate can be prohibitively 
slow in some applications. 

For example, naive importance sampling, like classical Monte Carlo, is 
intrinsically parallel. Therefore, in applications where one have access to a 
good importance density γ, linear speedup can be got with the number of 
processors available. Similarly, in cases where MCMC converges rapidly, the 
estimation of I can be parallelized by running separate chains on each 
processor. While these situations are hoped for, they are not particularly 
interesting from a parallel architecture standpoint because they can run 
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equally well in a distributed system. Finally, this research is not concerned 
with problems for which the computation of individual MCMC moves or 
importance weights are very expensive but themselves parallelizable. While 
the increased availability of parallel architectures will almost certainly be of 
help in such cases, the focus here is on potential speedups by parallelizing 
general sampling methods. Example of recent work in this area can be found 
in this research, in which speedup is obtained by parallelizing evaluation of 
individual likelihoods. 

 

Population-Based Markov chain Monte Carlo  
 A common technique in facilitating sampling from a complex 
distribution π with support in X is to introduce an auxiliary variable a∈ A and 
sample from a higher-dimensional distribution with support in the joint 
space A×X, such that admits π as a marginal distribution. With such 
samples, one can discard the auxiliary variables and be left with samples from 
π. A kernel will generally refer to a Markov chain transition kernel as opposed 
to a CUDA kernel.  
 This idea is utilized in population-based MCMC, which attempts to 
speed up convergence of an MCMC chain for π by instead constructing a 
Markov chain on a joint space XM using M − 1 auxiliary variables each in X. 
In general, one have M parallel ‘subchains’ each with stationary distribution 

 and πM  = π. Associated with each subchain i is an 
MCMC kernel Li that leaves πi invariant, and which one run at every time 
step. Of course, without any further moves, the stationary distribution of the 
joint chain is 
       and so if x1:M ~ ߨത, then xM ~ π. This scheme does not affect the convergence 
rate of the independent chain M. However, since mixtures of ߨത-stationary 
MCMC kernels can be cycled without affecting the stationary distribution of 
the joint chain, certain types of interaction between the subchains can be 
allowed which can speed up convergence. In general, a series of MCMC 
kernels that act on subsets of the variables is applied. The number of second-
stage MCMC kernels are denoted by R and the MCMC kernels themselves as 
K1, … ,KR, where kernel Kj operates on variables with indices in Ij⊂M. The 
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idea is that the R kernels are executed sequentially and it is required that each 
Kj leave Π I ∈ Ij πi invariant. 
 Given π, there are a wide variety of possible choices for M, π 1:M−1, L1:M, 
R, I1:R and K1:R which will affect the convergence rate of the joint chain. The 
first stage of moves involving L1:M is trivially parallelizable. However, the 
second stage is sequential in nature. For a parallel implementation, it is 
beneficial for the Ij’s to be disjoint as this allows the sequence of exchange 
kernels to be run in parallel. Of course, this implies that I1:R should vary with 
time since otherwise there will be no interaction between the disjoint subsets 
of chains. Furthermore, if the parallel architecture used is SIMD (Single 
Instruction Multiple Data) in nature, it is desirable to have the Kj’s be nearly 
identical algorithmically. The last consideration for parallelization is that 
while speedup is generally larger when more computational threads can be run 
in parallel, it is not always helpful to increase M arbitrarily as this can affect 
the convergence rate of the chain. However, in situations where a suitable 
choice of M is dwarfed by the number of computational threads available, one 
can always increase the number of chains with target π to produce more 
samples. 
 

Population-Based MCMC Algorithm 
There are two types of moves: 
1.  In parallel, each chain i performs an MCMC move targetting  
2. In parallel, adjacent chains i and i + 1 perform an MCMC ‘exchange’ 

move targeting  
A simple exchange move at time n proposes to swap the values of the 

two chains and has acceptance probability   

   . 
In order to ensure (indirect) communication between all the chains, the 
exchange partners are picked at each time with equal probability from  
                           . 
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Sequential Monte Carlo Samplers  
SMC samplers are a more general class of methods that utilize a 

sequence of auxiliary distributions ߨ ,… ,0ߨT,  much like population-based 
MCMC. However, in contrast to population-based MCMC, SMC samplers 
start from an auxiliary distribution  0ߨ and recursively approximate each 
intermediate distribution in turn until finally ߨT = ߨ is approximated. The 
algorithm has the same general structure as classical SMC, with differences 
only in the types of proposal distributions, target distributions and weighting 
functions used in the algorithm.  

The difference between population-based MCMC and SMC samplers 
is subtle but practically important. Both can be viewed as population-based 
methods on a similarly defined joint space since many samples are generated 
at each time step in parallel. However, in population-based MCMC the 
samples generated at each time each have different stationary distributions and 
the samples from a particular chain over time provide an empirical 
approximation of that chain’s target distribution. In SMC samplers, the 
weighted samples generated at each time approximate one auxiliary target 
distribution and the true target distribution is approximated at the last time 
step. 

                                               

Algorithmic Details 
1. At time t = 0: 
     For i = 1,…,N, sample           
     For i = 1,…,N, evaluate the importance weights: 

                                                              
2. For times t = 1,…, T: 
      For i = 1,…,N, sample 

       . 
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For i = 1,…,N, evaluate the importance weights: 

. 
Normalize the importance weights. Depending on some criteria, resample the 
particles. Set 

. 
For the special case where Lt-1 is the associated backwards kernel for Kt , ie. 

                        . 
the incremental importance weights simplify to 

                       . 
The normalization step is a reduction operation and a divide operation. The 
resampling step involves a parallel scan. 

             

Implementation of Canonical Examples 
To demonstrate the types of speed increase one can attain by utilizing 

GPUs, each method to a representative statistical problem is applied. Bayesian 
inference for a Gaussian mixture model is used as an application of the 
population-based MCMC and SMC samplers. 
 The applications are representative of the types of problems that these 
methods are commonly used to solve. In particular, while the distribution of 
mixture means given observations is only one example of a multimodal 
distribution, it can be thought of as a canonical distribution with multiple 
well-separated modes. Therefore, the ability to sample points from this 
distribution is indicative of the ability to sample points from a wide range of 
multimodal distributions.  
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Mixture Modeling 
Finite mixture models are a very popular class of statistical models as 

they provide a flexible way to model heterogeneous data. Let y = y1:m denote 
identically independent distribution (i.i.d) observations where yj∈R for j {1, 
… ,m}. A univariate Gaussian mixture model with k components states that 
each observation is distributed according to the mixture density 

   where f denotes the density of the univariate normal distribution. The density 
of y is then equal to 
                             . 
For simplicity, assume that k, w1:k−1 and σ1:k are known and that the prior 
distribution on μ is uniform on the k-dimensional hypercube [−10, 10]k. k = 4, 
σi = σ = 0.55, wi = w = 1/k for i {1, … , k} are set. m = 100 observations are 
simulated for μ = μ1:4 = (−3, 0, 3, 6). The resulting posterior distribution for μ 
is given by 
                             . 

The main computational challenge associated with Bayesian inference 
in finite mixture models is the nonidentifiability of the components. As 
exchangeable priors have been used for the parameters μ1:4, the posterior 
distribution p(μ|y) is invariant to permutations in the labeling of the 
parameters. Hence this posterior admits k! = 24 symmetric modes, which 
basic random-walk MCMC and importance sampling methods typically fail to 
characterize using practical amounts of computation. Generating samples 
from this type of posterior is a popular method for determining the ability of 
samplers to explore a high-dimensional space with multiple well-separated 
modes. 

 

 Population-Based Markov chain Monte Carlo  
The auxiliary distributions π1:M−1 following the parallel tempering 

methodology are selected, that is, πi(x) π(x)βi with 0 < β1 < … < βM = 1 and 
use M = 200. This class of auxiliary distributions is motivated by the fact that 
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MCMC converges more rapidly when the target distribution is flatter. For this 
problem, the cooling schedule βi = (i/M)2 and a standard N(0,Ik) random walk 
Metropolis-Hastings kernel are used for the first stage moves. 

For the second stage moves, the basic exchange move are used, chains 
i and j swap their values with probability min{1, αi j} where  

                                                  . 
Further, the exchanges to take place only between adjacent chains are 

allowed so that all moves can be done in parallel. R = M/2 and I1:R is either 
{{1, 2}, {3, 4}, … , {M − 1, M}} or {{2, 3}, {4, 5}, … , {M – 2, M − 1},            
{M, 1}}, each with probability half are used. Emphasize that all first stage 
MCMC moves are executed in parallel on the GPU, followed by all the 
exchange moves being executed in parallel. The following code segments are 
to get compute value function properties for MCMC. 

 
 
 
 
 
 
 
 

 To test the computational time required by the algorithms the number 
of chains are allowed to vary but fix the number of points which wishing to 
sample from the marginal density πM = π at 8192. As such, an increase in the 
number of chains leads to a proportional increase in the total number of points 
sampled. 
 

Sequential Monte Carlo Sampler  
As with population-based MCMC, a tempering approach and the same 

cooling schedule are used, this is, πt(x) π(x)βt with  βt = (t/M)2 and M = 200. 
The uniform prior on the hypercube are used to generate the samples {x0(1:N)} 
and perform 10 MCMC steps with the standard N(0,Ik) random walk 
Metropolis-Hastings kernel at every time step. The generic backward kernel is 

void mcmc(int M, int nb, int nt) 
{ 

generate_mix_data(k, sigma, mus, data_array, L); 
compute_ci1_ci2(sigma, 1.0f / k, c1, c2); 
populate_rand_d(d_array_init, numChains * k); 
multiply(numChains * k, d_array_init, d_array_init, 20, nb, nt); 
add(numChains * k, d_array_init, d_array_init, -10, nb, nt); 

} 
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used for the case where each kernel is πt -stationary so that the unnormalized 
incremental importance weights are of the form πt(xt−1)/πt−1(xt−1). The 
following code segments are to compute value function properties for SMCS. 

 
 
 
 
 
 
 

Results and Discussion 
The parallel code is run on a computer equipped with an NVIDIA GT 

750M GPU, and the reference single-threaded code is run on a Intel 
(R)core(TM)i7 4500U CPU 1.80GHz processor. The resulting processing 
times and speedups are given in Tables 1–2.  
 

Population-Based Markov chain Monte Carlo Results 
      Table 1: Running times for the Population-Based MCMC Sampler for various 
numbers of chains M. 

       N = 8192 points are sampled from chain M.         
                                           

M CPU(secs) GT 750 M(secs) Speedup 
(1)   8 1.33 0.93 1 
(2)  32 5.32 1.03 5 
(3) 128 20.00 1.89 11 
(4) 512 62.40 1.24 50 
(5)2048 249.64 1.43 175 
(6)8192 998.42 2.32 430 
(7)32768 4002.00 7.73 518 
(8)131072 16218.00 28.35 572 

              
 

void testMG(int N, int nb, int nt) 
 { 
 generate_mix_data(k, sigma, mus, data_array, L); 
 compute_ci1_ci2(sigma, 1.0f / k, c1, c2); 
 populate_rand_d(d_array_init, N * k); 
 multiply(N * k, d_array_init, d_array_init, 20, nb, nt); 
 add(N * k, d_array_init, d_array_init, -10, nb, nt); 
 testMG(N, k, T, numSteps, d_array_init, temps, h_args_t1, h_args_t2, nb, nt); 
 testMG_host(N, k, T, numSteps, array_init, temps, h_args_t1, h_args_t2); 
 } 



156               J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 

         
 Figure 2: The relation of execution time and number of chains 

  
 Figure 3: The relation of speedup and number of chains 
Processing times for MCMC code are given in Table 1, in which one 

can see that using 131072 chains is impractical on the CPU but entirely 
reasonable using the GPU. Figure 2 shows that GPU time is faster than CPU 
time. Figure 3 shows that speedup goes faster with increasing the number of 
chains. So it can be observed that parallel computing is more suitable for 
enormous data. 
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Sequential Monte Carlo Sampler Results 
Table 2: Running times for the Sequential Monte Carlo Sampler for various 

values of N. 
N CPU(secs) GT 750 M 

(secs) Speedup 
(1)8192 266.40 0.60 444 
(2)16384 529.20 1.11 477 
(3)32768 1062.00 2.19 485 
(4)65536 2118.00 4.50 471 
(5)131072    4236.00 8.08 524 
(6)262144 8460.00 16.22 522 

 

                  
           Figure  4: The relation of execution time and number of values 

       
       Figure 5: The relation of speedup and number of values 
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Processing times for SMCS code are given in Table 2. GPU execution 
time is faster than CPU execution time in SMC sampler that shown in Figure 
4. Figure 5 shows that speedup goes faster with increasing the number of 
values. 
 

Discussion 
The speedup for the population-based MCMC algorithm and the SMC 

sampler is tremendous. In particular, the evaluation of p(y|μ) for the mixture-
modelling application has high arithmetic intensity since it consists of a 
product-sum operation with 400 Gaussian log-likelihood evaluations 
involving only 104 values. In fact, because of the low register and memory 
requirements, so many threads can be run concurrently that SIMD calculation 
of this likelihood can be sped up by 500 times on the GT 750M. Estimation of 
static parameters in continuous state-space models or the use of SMC 
proposals within MCMC can require thousands of runs, so a speedup of this 
scale can substantially reduce the computation time of such approaches. 
Speedups can be expected in the vicinity of 500 with SMC if few resampling 
steps are required and each weighting step has small space complexity and 
moderate time complexity. 

While CUDA have been used to implement the parallel components of 
algorithms, the results are not necessarily specific to this framework or to 
GPUs. It is expected that the many-core processor market will grow and there 
will be a variety of different devices and architectures to take advantage of. 
However, the SIMD architecture and the sacrifice of caching and flow control 
for arithmetic processing is likely to remain since when it is well-suited to a 
problem it will nearly always deliver considerable speedup. For users who 
would like to see moderate speedup with very little effort, there is work being 
done to develop libraries that will take existing code and automatically 
generate code that will run on a GPU.  

The speedups attainable with many-core architectures have broad 
implications in the design, analysis, and application of SMC and population-
based MCMC methods. In application, this does not occur until one have 
around 4096 auxiliary distributions. One might notice that this number is far 
larger than the number of processors on the GPU. This is due to the fact that 
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even with many processors, significant speedup can be attained by having a 
full pipeline of instructions on each processor to hide the relatively slow 
memory reads and writes. In both SMC and MCMC, it is also clear from this 
case study that it is beneficial for each thread to use as few registers as 
possible since this determines the number of threads that can be run 
simultaneously. This may be of interest to the methodology community since 
it creates a space-time trade-off that might be exploited in some applications. 

A consequence of the space-time trade-off mentioned above is that 
methods which require large numbers of registers per thread are not 
necessarily suitable for parallelization using GPUs. For example, operations 
on large, dense matrices that are unique to each thread can restrict the number 
of threads that can run in parallel and hence dramatically affect potential 
speedup. In cases where data are shared across threads, however, this is not an 
issue. In principle, it is not the size of the data that matters but the space 
complexity of the algorithm in each thread that dictates how scalable the 
parallelization is. 

 

Conclusion 
The potential of parallel processing to aid in statistical computing is 

well documented. Graphics cards for certain generic types of computation 
offer parallel processing speedups with advantages. They are Cost: graphics 
cards are relatively cheap, being commodity products. Accessibility: graphics 
cards are readily obtainable from consumer-level computer stores or over the 
internet. Maintenance: the devices are self-contained and can be hosted on 
conventional desktop and laptop computers. Speed: in line with multi-core 
CPU clusters, graphics cards offer significant speedup, albeit for a restricted 
class of scientific computing algorithms. Power: GPUs are low energy 
consumption devices compared to clusters of traditional computers, with a 
graphics card requiring around 200 Watts. While improvements in energy 
efficiency are application-specific, it is reasonable in many situations to 
expect a GPU to use around 10 per cent of the energy to that of an equivalent 
CPU cluster. Dedicated and local: the graphics cards slot into conventional 
computers offering the user ownership without the need to transport data 
externally. 
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The parallelization of the advanced Monte Carlo methods described here 
opens up challenges both for practitioners and for algorithm designers. There 
are already an abundance of statistical problems that are being solved 
computationally and technological advances, if taken advantage of by the 
community, can serve to make previously impractical solutions eminently 
reasonable and motivate the development of new methods. 

The speedups have practical significance. Arithmetic intensity is 
important. There is a roughly linear penalty for the space complexity of each 
thread. Emerging many-core technology is likely to have the same kinds of 
restrictions. There is a need for methodological attention to this model of 
computation. For example, SMC sampler methodology can be more suitable 
to parallelization when the number of auxiliary distributions one wants to 
introduce is not very large. There are many other algorithms that will benefit 
from this technology. 
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