
J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

*. Dr., Associate Professor, Department of Computer Studies, University of Yangon

MASSIVELY PARALLEL POPULATION-BASED
MONTE CARLO METHODS

WITH MANY-CORE PROCESSORS

Wint Pa Pa Kyaw*

Abstract
This research presents the utility of graphics cards to perform

massively parallel simulation of advanced Monte Carlo methods. Graphics
cards, containing multiple Graphics Processing Units (GPUs), are self-
contained parallel computational devices that can be housed in conventional
desktop and laptop computers and can be thought of as prototypes of the
next generation of many-core processors. For certain classes of population-
based Monte Carlo (MC) algorithms they offer massively parallel
simulation, with the added advantage over conventional distributed multi-
core processors that they are cheap, easily accessible, easy to maintain, easy
to code, dedicated local devices with low power consumption. On a
canonical set of stochastic simulation examples including population-based
Markov chain Monte Carlo (MCMC) methods and Sequential Monte Carlo
(SMC) methods, speedups are found from 35 to 500 fold over conventional
single-threaded computer code. These findings suggest that GPUs have the
potential to facilitate the growth of statistical modelling into complex data
rich domains through the availability of cheap and accessible many-core
computation.
Keywords: Sequential Monte Carlo, Population-Based Markov Chain

Monte Carlo, General Purpose Computation on Graphics
Processing Units, Many-Core Architecture, Stochastic
Simulation, Parallel Processing

Introduction
This research describes the utility of graphics cards involving Graphics

Processing Units (GPUs) to perform local, dedicated, massively parallel
stochastic simulation. GPUs were originally developed as dedicated devices to
aid in real-time graphics rendering. However recently there has been an
emerging literature on their use for scientific computing as they house
multicore processors. Many advanced population-based Monte Carlo (MC)
algorithms are ideally suited to GPU simulation and offer significant speed up
over single CPU implementation. The focus is on the parallelization of general

144 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

sampling methods. Moreover, this research shows how the choice of
population-based MC algorithm for a particular problem can depend on
whether one is running the algorithm on a GPU or a CPU.

To gain an understanding of the potential benefits to statisticians this
research has investigated speedups on a canonical set of examples taken from
the population-based MC literature. These include Bayesian inference for a
Gaussian mixture model computed using a population-based Markov Chain
Monte Carlo (MCMC) method. The idea of splitting the computational effort of
parallelizable algorithms amongst processors is certainly not new to
statisticians. In fact, distributed systems and clusters of computers have been
around for decades. Many-core processor communication has very low
latency and very high bandwidth due to high-speed memory that is shared
amongst the cores. Low latency here means the time for a unit of data to be
accessed or written to memory by a processor is low while high bandwidth
means that the amount of data that can be sent in a unit of time is high. For
many algorithms, this makes parallelization viable where it previously was
not. In addition, the energy efficiency of a many-core computation compared
to a single-core or distributed computation can be improved. This is because
the computation can both take less time and require less overhead. Finally,
these features enable the use of parallel computing for researchers outside
traditional high-cost centers housing high-performance computing clusters.

The speedup is chosen to investigate for the simulation of random
variates from complex distributions, a common computational task when
performing inference using MC. In particular, population-based MCMC
methods and SMC methods are focused on for producing random variates as
these are not algorithms that typically see significant speedup on clusters due
to the need for frequent, high-volume communication between computing
nodes. This work focuses on the suitability of many-core computation for MC
algorithms whose structure is parallel, since this is of broad theoretical
interest, as opposed to a focusing on parallel computation of application-
specific likelihoods.

The algorithms are implemented for the Compute Unified Device
Architecture (CUDA) and make use of GPUs which support this architecture.
CUDA offers a fairly mature development environment via an extension to
the C programming language. For applications CUDA version 5.5 with an

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 145

NVIDIA GT 750M are used. The GT 750M has 384 multiprocessors. For all
current NVIDIA cards, a multiprocessor comprises 8 arithmetic logic units
(ALUs), 2 special units for transcendental functions, a multithreaded
instruction unit and on-chip shared memory. For example, for single-precision
floating point computation, one can think of the GT 750 as having 3072 (384
× 8) single processors. The current generation of GPUs is 4-8 times faster at
single precision arithmetic than double precision. Single precision seems
perfectly sufficient for the applications in this research since the variance of
the Monte Carlo estimates exceeds the perturbations due to finite machine
precision.

Graphics Processing Unit for Parallel Processing
GPUs have evolved into many-core processing units, currently with up

to 30 multiprocessors per card, in response to commercial demand for real-
time graphics rendering, independently of demand for many-core processors
in the scientific computing community. As such, the architecture of GPUs is
very different to that of conventional CPUs. An important difference is that
GPUs devote proportionally more transistors to ALUs and less to caches and
flow control in comparison to CPUs. This makes them less general purpose
but highly effective for data-parallel computation with high arithmetic
intensity, i.e. computations where the same instructions are executed on
different data elements and where the ratio of arithmetic operations to
memory operations is high. This Single Instruction Multiple Data (SIMD)
architecture puts a heavy restriction on the types of computation that
optimally utilize the GPU but in cases where the architecture is suitable it
reduces overhead.

Figure 1 gives a visualization of the link between a host machine and
the graphics card, emphasizing the data bandwidth characteristics of the links
and the number of processing cores. A program utilizing a GPU is hosted on a
CPU with both the CPU and the GPU having their own memory. Data is
passed between the host and the device via a standard memory bus, similar to
how data is passed between main memory and the CPU. The memory bus
between GPU memory and the GPU cores is both wider and has a higher
clock rate than a standard bus, enabling much more data to be sent to the cores
than the equivalent link on the host allows. This type of architecture is ideally

146 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

suited to data-parallel computation since large quantities of data can be loaded
into registers for the cores to process in parallel. In contrast, typical computer
architectures use a cache to speed up memory accesses using locality
principles that are generally good but do not fully apply to data-parallel
computations, with the absence of temporal locality most notable.

Figure 1: Link between host and graphics card. The thicker lines represent

higher data bandwidth while the squares represent processor cores.

Graphics Processing Units Parallelizable Algorithms
In general, if a computing task is well-suited to SIMD parallelization

then it will be well-suited to computation on a GPU. In particular, data-
parallel computations with high arithmetic intensity (computations where the
ratio of arithmetic operations to memory operations is high) are able to attain
maximum performance from a GPU. This is because the volume of very fast
arithmetic instructions can hide the relatively slow memory accesses. It is
crucial to determine whether a particular computation is data-parallel on the
instruction level when determining suitability. From a statistical simulation
perspective, integration via classical Monte Carlo or importance sampling is
ideal computational tasks in a SIMD framework. This is because each
computing node can produce and weight a sample in parallel, assuming that
the sampling procedure and the weighting procedure have no conditional
branches. If these methods do branch, speedup can be compromised by many
computing nodes running idle while others finish their tasks. This can occur,
for example, if the sampling procedure uses rejection sampling.

In contrast, if a computing task is not well-suited to SIMD
parallelization then it will not be well-suited to computation on a GPU. In

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 147

particular, task-parallel computations where one executes different
instructions on the same or different data cannot utilize the shared flow
control hardware on a GPU and often end up running sequentially. Even when
a computation is data-parallel, it might not give large performance
improvements on a GPU due to memory constraints. This can be due to the
number of registers required by each thread or due to the size and structure of
the data necessary for the computation requiring large amounts of memory to
be transferred between the host and the graphics card.

Many statistical algorithms involve large data sets, and the extent to
which many-core architectures can provide speedup depends largely on the
types of operations that need to be performed on the data. For example, many
matrix operations derive little speedup from parallelization except in special
cases, e.g. when the matrices involved are sparse. It is difficult to classify
concisely the types of computations amenable to parallelization beyond the
need for data-parallel operations with high arithmetic intensity. However,
experience with parallel computing should allow such classifications to be
made prior to implementation in most cases.

Parallelizable Sampling Methods
A number of sampling methods for parallel implementations can be

produced without significant modification. There is an abundance of statistical
problems that are essentially computational in nature, especially in Bayesian
inference. In many such cases, the problem can be distilled into one of
sampling from a probability distribution whose density π, pointwise and up to
a normalizing constant can be computed, that is, π*(·) where π (x) = π*(x)/Z
can be computed. A common motivation for wanting samples from π is so
expectations of certain functions can be computed. If such a function is
denoted by ϕ, the expectation of interest is

148 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

The Monte Carlo estimate of this quantity is given by

where are samples from π.

Samples from π in order to compute this estimate are needed. In
practice, one often cannot sample from π directly. There are two general
classes of methods for dealing with this. The first are importance sampling
methods, where the weighted samples are generated from π by generating N
samples according to some importance density γ proportional to γ* and then
estimating I via

where W(i) are normalized importance weights

The asymptotic variance of this estimate is given by C(ϕ, π, γ)/N, that is,

a constant over N. For many problems, it is difficult to come up with an
importance density γ such that C(ϕ, π, γ) is small enough to attain reasonable
variance with practical values of N.

The second general class of methods are MCMC methods, in which an
ergodic π-stationary Markov chain is sequentially constructed. Once the chain
has converged, all the dependent samples can be used to estimate I. The major
issue with MCMC methods is that their convergence rate can be prohibitively
slow in some applications.

For example, naive importance sampling, like classical Monte Carlo, is
intrinsically parallel. Therefore, in applications where one have access to a
good importance density γ, linear speedup can be got with the number of
processors available. Similarly, in cases where MCMC converges rapidly, the
estimation of I can be parallelized by running separate chains on each
processor. While these situations are hoped for, they are not particularly
interesting from a parallel architecture standpoint because they can run

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 149

equally well in a distributed system. Finally, this research is not concerned
with problems for which the computation of individual MCMC moves or
importance weights are very expensive but themselves parallelizable. While
the increased availability of parallel architectures will almost certainly be of
help in such cases, the focus here is on potential speedups by parallelizing
general sampling methods. Example of recent work in this area can be found
in this research, in which speedup is obtained by parallelizing evaluation of
individual likelihoods.

Population-Based Markov chain Monte Carlo
 A common technique in facilitating sampling from a complex
distribution π with support in X is to introduce an auxiliary variable a∈ A and
sample from a higher-dimensional distribution with support in the joint
space A×X, such that admits π as a marginal distribution. With such
samples, one can discard the auxiliary variables and be left with samples from
π. A kernel will generally refer to a Markov chain transition kernel as opposed
to a CUDA kernel.
 This idea is utilized in population-based MCMC, which attempts to
speed up convergence of an MCMC chain for π by instead constructing a
Markov chain on a joint space XM using M − 1 auxiliary variables each in X.
In general, one have M parallel ‘subchains’ each with stationary distribution

 and πM = π. Associated with each subchain i is an
MCMC kernel Li that leaves πi invariant, and which one run at every time
step. Of course, without any further moves, the stationary distribution of the
joint chain is
 and so if x1:M ~ ߨത, then xM ~ π. This scheme does not affect the convergence
rate of the independent chain M. However, since mixtures of ߨത-stationary
MCMC kernels can be cycled without affecting the stationary distribution of
the joint chain, certain types of interaction between the subchains can be
allowed which can speed up convergence. In general, a series of MCMC
kernels that act on subsets of the variables is applied. The number of second-
stage MCMC kernels are denoted by R and the MCMC kernels themselves as
K1, … ,KR, where kernel Kj operates on variables with indices in Ij⊂M. The

150 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

idea is that the R kernels are executed sequentially and it is required that each
Kj leave Π I ∈ Ij πi invariant.
 Given π, there are a wide variety of possible choices for M, π 1:M−1, L1:M,
R, I1:R and K1:R which will affect the convergence rate of the joint chain. The
first stage of moves involving L1:M is trivially parallelizable. However, the
second stage is sequential in nature. For a parallel implementation, it is
beneficial for the Ij’s to be disjoint as this allows the sequence of exchange
kernels to be run in parallel. Of course, this implies that I1:R should vary with
time since otherwise there will be no interaction between the disjoint subsets
of chains. Furthermore, if the parallel architecture used is SIMD (Single
Instruction Multiple Data) in nature, it is desirable to have the Kj’s be nearly
identical algorithmically. The last consideration for parallelization is that
while speedup is generally larger when more computational threads can be run
in parallel, it is not always helpful to increase M arbitrarily as this can affect
the convergence rate of the chain. However, in situations where a suitable
choice of M is dwarfed by the number of computational threads available, one
can always increase the number of chains with target π to produce more
samples.

Population-Based MCMC Algorithm
There are two types of moves:
1. In parallel, each chain i performs an MCMC move targetting
2. In parallel, adjacent chains i and i + 1 perform an MCMC ‘exchange’

move targeting
A simple exchange move at time n proposes to swap the values of the

two chains and has acceptance probability

 .
In order to ensure (indirect) communication between all the chains, the
exchange partners are picked at each time with equal probability from
 .

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 151

Sequential Monte Carlo Samplers
SMC samplers are a more general class of methods that utilize a

sequence of auxiliary distributions ߨ ,… ,0ߨT, much like population-based
MCMC. However, in contrast to population-based MCMC, SMC samplers
start from an auxiliary distribution 0ߨ and recursively approximate each
intermediate distribution in turn until finally ߨT = ߨ is approximated. The
algorithm has the same general structure as classical SMC, with differences
only in the types of proposal distributions, target distributions and weighting
functions used in the algorithm.

The difference between population-based MCMC and SMC samplers
is subtle but practically important. Both can be viewed as population-based
methods on a similarly defined joint space since many samples are generated
at each time step in parallel. However, in population-based MCMC the
samples generated at each time each have different stationary distributions and
the samples from a particular chain over time provide an empirical
approximation of that chain’s target distribution. In SMC samplers, the
weighted samples generated at each time approximate one auxiliary target
distribution and the true target distribution is approximated at the last time
step.

Algorithmic Details
1. At time t = 0:
 For i = 1,…,N, sample
 For i = 1,…,N, evaluate the importance weights:

2. For times t = 1,…, T:
 For i = 1,…,N, sample

 .

152 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

For i = 1,…,N, evaluate the importance weights:

.
Normalize the importance weights. Depending on some criteria, resample the
particles. Set

.
For the special case where Lt-1 is the associated backwards kernel for Kt , ie.

 .
the incremental importance weights simplify to

 .
The normalization step is a reduction operation and a divide operation. The
resampling step involves a parallel scan.

Implementation of Canonical Examples
To demonstrate the types of speed increase one can attain by utilizing

GPUs, each method to a representative statistical problem is applied. Bayesian
inference for a Gaussian mixture model is used as an application of the
population-based MCMC and SMC samplers.
 The applications are representative of the types of problems that these
methods are commonly used to solve. In particular, while the distribution of
mixture means given observations is only one example of a multimodal
distribution, it can be thought of as a canonical distribution with multiple
well-separated modes. Therefore, the ability to sample points from this
distribution is indicative of the ability to sample points from a wide range of
multimodal distributions.

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 153

Mixture Modeling
Finite mixture models are a very popular class of statistical models as

they provide a flexible way to model heterogeneous data. Let y = y1:m denote
identically independent distribution (i.i.d) observations where yj∈R for j {1,
… ,m}. A univariate Gaussian mixture model with k components states that
each observation is distributed according to the mixture density

 where f denotes the density of the univariate normal distribution. The density
of y is then equal to
 .
For simplicity, assume that k, w1:k−1 and σ1:k are known and that the prior
distribution on μ is uniform on the k-dimensional hypercube [−10, 10]k. k = 4,
σi = σ = 0.55, wi = w = 1/k for i {1, … , k} are set. m = 100 observations are
simulated for μ = μ1:4 = (−3, 0, 3, 6). The resulting posterior distribution for μ
is given by
 .

The main computational challenge associated with Bayesian inference
in finite mixture models is the nonidentifiability of the components. As
exchangeable priors have been used for the parameters μ1:4, the posterior
distribution p(μ|y) is invariant to permutations in the labeling of the
parameters. Hence this posterior admits k! = 24 symmetric modes, which
basic random-walk MCMC and importance sampling methods typically fail to
characterize using practical amounts of computation. Generating samples
from this type of posterior is a popular method for determining the ability of
samplers to explore a high-dimensional space with multiple well-separated
modes.

 Population-Based Markov chain Monte Carlo
The auxiliary distributions π1:M−1 following the parallel tempering

methodology are selected, that is, πi(x) π(x)βi with 0 < β1 < … < βM = 1 and
use M = 200. This class of auxiliary distributions is motivated by the fact that

154 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

MCMC converges more rapidly when the target distribution is flatter. For this
problem, the cooling schedule βi = (i/M)2 and a standard N(0,Ik) random walk
Metropolis-Hastings kernel are used for the first stage moves.

For the second stage moves, the basic exchange move are used, chains
i and j swap their values with probability min{1, αi j} where

 .
Further, the exchanges to take place only between adjacent chains are

allowed so that all moves can be done in parallel. R = M/2 and I1:R is either
{{1, 2}, {3, 4}, … , {M − 1, M}} or {{2, 3}, {4, 5}, … , {M – 2, M − 1},
{M, 1}}, each with probability half are used. Emphasize that all first stage
MCMC moves are executed in parallel on the GPU, followed by all the
exchange moves being executed in parallel. The following code segments are
to get compute value function properties for MCMC.

 To test the computational time required by the algorithms the number
of chains are allowed to vary but fix the number of points which wishing to
sample from the marginal density πM = π at 8192. As such, an increase in the
number of chains leads to a proportional increase in the total number of points
sampled.

Sequential Monte Carlo Sampler
As with population-based MCMC, a tempering approach and the same

cooling schedule are used, this is, πt(x) π(x)βt with βt = (t/M)2 and M = 200.
The uniform prior on the hypercube are used to generate the samples {x0(1:N)}
and perform 10 MCMC steps with the standard N(0,Ik) random walk
Metropolis-Hastings kernel at every time step. The generic backward kernel is

void mcmc(int M, int nb, int nt)
{

generate_mix_data(k, sigma, mus, data_array, L);
compute_ci1_ci2(sigma, 1.0f / k, c1, c2);
populate_rand_d(d_array_init, numChains * k);
multiply(numChains * k, d_array_init, d_array_init, 20, nb, nt);
add(numChains * k, d_array_init, d_array_init, -10, nb, nt);

}

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 155

used for the case where each kernel is πt -stationary so that the unnormalized
incremental importance weights are of the form πt(xt−1)/πt−1(xt−1). The
following code segments are to compute value function properties for SMCS.

Results and Discussion
The parallel code is run on a computer equipped with an NVIDIA GT

750M GPU, and the reference single-threaded code is run on a Intel
(R)core(TM)i7 4500U CPU 1.80GHz processor. The resulting processing
times and speedups are given in Tables 1–2.

Population-Based Markov chain Monte Carlo Results
 Table 1: Running times for the Population-Based MCMC Sampler for various
numbers of chains M.

 N = 8192 points are sampled from chain M.

M CPU(secs) GT 750 M(secs) Speedup
(1) 8 1.33 0.93 1
(2) 32 5.32 1.03 5
(3) 128 20.00 1.89 11
(4) 512 62.40 1.24 50
(5)2048 249.64 1.43 175
(6)8192 998.42 2.32 430
(7)32768 4002.00 7.73 518
(8)131072 16218.00 28.35 572

void testMG(int N, int nb, int nt)
 {
 generate_mix_data(k, sigma, mus, data_array, L);
 compute_ci1_ci2(sigma, 1.0f / k, c1, c2);
 populate_rand_d(d_array_init, N * k);
 multiply(N * k, d_array_init, d_array_init, 20, nb, nt);
 add(N * k, d_array_init, d_array_init, -10, nb, nt);
 testMG(N, k, T, numSteps, d_array_init, temps, h_args_t1, h_args_t2, nb, nt);
 testMG_host(N, k, T, numSteps, array_init, temps, h_args_t1, h_args_t2);
 }

156 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

 Figure 2: The relation of execution time and number of chains

 Figure 3: The relation of speedup and number of chains
Processing times for MCMC code are given in Table 1, in which one

can see that using 131072 chains is impractical on the CPU but entirely
reasonable using the GPU. Figure 2 shows that GPU time is faster than CPU
time. Figure 3 shows that speedup goes faster with increasing the number of
chains. So it can be observed that parallel computing is more suitable for
enormous data.

0
10000
20000

1 2 3 4 5 6 7 8
Ex

ecu
tio

n T
im

e (s
ec)

No. of Chains

Execution Time (sec) Vs No. of Chains

CPU(sec)
GT 750 M(sec)

0
200
400
600

1 2 3 4 5 6 7 8

Sp
eed

up

No. of Chains

Speedup Vs No. of Chains

Speedup

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 157

Sequential Monte Carlo Sampler Results
Table 2: Running times for the Sequential Monte Carlo Sampler for various

values of N.
N CPU(secs) GT 750 M

(secs) Speedup
(1)8192 266.40 0.60 444
(2)16384 529.20 1.11 477
(3)32768 1062.00 2.19 485
(4)65536 2118.00 4.50 471
(5)131072 4236.00 8.08 524
(6)262144 8460.00 16.22 522

 Figure 4: The relation of execution time and number of values

 Figure 5: The relation of speedup and number of values

0
5000

10000

1 2 3 4 5 6

Ex
ecu

tio
n T

im
e (s

ec)

No of Values

Execution Time (sec) Vs No. of Values

CPU(sec)
GT 750 M(sec)

400
450
500
550

1 2 3 4 5 6

Sp
eed

up

No of Values

Speedup Vs No. of Values

Speedup

158 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

Processing times for SMCS code are given in Table 2. GPU execution
time is faster than CPU execution time in SMC sampler that shown in Figure
4. Figure 5 shows that speedup goes faster with increasing the number of
values.

Discussion
The speedup for the population-based MCMC algorithm and the SMC

sampler is tremendous. In particular, the evaluation of p(y|μ) for the mixture-
modelling application has high arithmetic intensity since it consists of a
product-sum operation with 400 Gaussian log-likelihood evaluations
involving only 104 values. In fact, because of the low register and memory
requirements, so many threads can be run concurrently that SIMD calculation
of this likelihood can be sped up by 500 times on the GT 750M. Estimation of
static parameters in continuous state-space models or the use of SMC
proposals within MCMC can require thousands of runs, so a speedup of this
scale can substantially reduce the computation time of such approaches.
Speedups can be expected in the vicinity of 500 with SMC if few resampling
steps are required and each weighting step has small space complexity and
moderate time complexity.

While CUDA have been used to implement the parallel components of
algorithms, the results are not necessarily specific to this framework or to
GPUs. It is expected that the many-core processor market will grow and there
will be a variety of different devices and architectures to take advantage of.
However, the SIMD architecture and the sacrifice of caching and flow control
for arithmetic processing is likely to remain since when it is well-suited to a
problem it will nearly always deliver considerable speedup. For users who
would like to see moderate speedup with very little effort, there is work being
done to develop libraries that will take existing code and automatically
generate code that will run on a GPU.

The speedups attainable with many-core architectures have broad
implications in the design, analysis, and application of SMC and population-
based MCMC methods. In application, this does not occur until one have
around 4096 auxiliary distributions. One might notice that this number is far
larger than the number of processors on the GPU. This is due to the fact that

J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 159

even with many processors, significant speedup can be attained by having a
full pipeline of instructions on each processor to hide the relatively slow
memory reads and writes. In both SMC and MCMC, it is also clear from this
case study that it is beneficial for each thread to use as few registers as
possible since this determines the number of threads that can be run
simultaneously. This may be of interest to the methodology community since
it creates a space-time trade-off that might be exploited in some applications.

A consequence of the space-time trade-off mentioned above is that
methods which require large numbers of registers per thread are not
necessarily suitable for parallelization using GPUs. For example, operations
on large, dense matrices that are unique to each thread can restrict the number
of threads that can run in parallel and hence dramatically affect potential
speedup. In cases where data are shared across threads, however, this is not an
issue. In principle, it is not the size of the data that matters but the space
complexity of the algorithm in each thread that dictates how scalable the
parallelization is.

Conclusion
The potential of parallel processing to aid in statistical computing is

well documented. Graphics cards for certain generic types of computation
offer parallel processing speedups with advantages. They are Cost: graphics
cards are relatively cheap, being commodity products. Accessibility: graphics
cards are readily obtainable from consumer-level computer stores or over the
internet. Maintenance: the devices are self-contained and can be hosted on
conventional desktop and laptop computers. Speed: in line with multi-core
CPU clusters, graphics cards offer significant speedup, albeit for a restricted
class of scientific computing algorithms. Power: GPUs are low energy
consumption devices compared to clusters of traditional computers, with a
graphics card requiring around 200 Watts. While improvements in energy
efficiency are application-specific, it is reasonable in many situations to
expect a GPU to use around 10 per cent of the energy to that of an equivalent
CPU cluster. Dedicated and local: the graphics cards slot into conventional
computers offering the user ownership without the need to transport data
externally.

160 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

The parallelization of the advanced Monte Carlo methods described here
opens up challenges both for practitioners and for algorithm designers. There
are already an abundance of statistical problems that are being solved
computationally and technological advances, if taken advantage of by the
community, can serve to make previously impractical solutions eminently
reasonable and motivate the development of new methods.

The speedups have practical significance. Arithmetic intensity is
important. There is a roughly linear penalty for the space complexity of each
thread. Emerging many-core technology is likely to have the same kinds of
restrictions. There is a need for methodological attention to this model of
computation. For example, SMC sampler methodology can be more suitable
to parallelization when the number of auxiliary distributions one wants to
introduce is not very large. There are many other algorithms that will benefit
from this technology.

Acknowledgements
I would like to express my sincere grateful very much to Professor Dr Soe Mya Mya

Aye, Head of Department of Computer Studies, Yangon University for her kind permission to
carry out this research. My thanks to my gratitude to Dr. Pho Kaung, Rector, University of
Yangon, who has given me invaluable advice and patient guidance that helped my research
work to accomplish.

References
1. Andrieu C., Doucet A., and Holenstein R., (2010) “Particle Markov Chain Monte Carlo.”

Journal of the Royal Statistical Society, Ser. B, vol. 72, pp.269–342.
2. Brockwell A. E., (2006) “Parallel Processing in Markov Chain Monte Carlo Simulation by

Pre-Fetching.” Journal of Computational and Graphical Statistics,
vol.15,no.1, pp.246–261.

3. Celeux, G., Hurn, M., and Robert, C. P., (2000) “Computational and Inferential Difficulties
with Mixture Posterior Distributions.” Journal of the American
Statistical Association, vol.95, pp.957–970.

4. Del Moral P., Doucet, A., and Jasra, A.,(2006) “Sequential Monte Carlo Samplers.”
Journal of the Royal Statistical Society, Ser. B, vol. 68,no.3, pp.411–436.

5. Doucet A., and Johansen A. M.,(2010) A Tutorial on Particle Filtering and Smoothing:
Fifteen Years Later, in Handbook of Nonlinear Filtering, eds., Oxford
University Press.

